稳压电池充电法:充电电源的工作电压在所有充电时间里维持不变的数据,伴随着电瓶直流电压的逐步上升,电流量慢慢降低。与恒流充电法对比,其电池充电全过程更接近于电池充电曲线图。用稳定工作电压快充。因为电池充电前期电瓶感应电动势较高,电流非常大,伴随电池充电的开展,电流量将逐步减小,因而,只需简单自动控制系统。
举个例子来说,一辆新能源汽车的电池包容量为70kWh。当充电桩功率低于70kW 时,此时充电桩的功率越大,充电速度越快。但是当充电桩功率超过 70kW,达到 100kW 时,由于电池无法容纳,此时的充电功率还是只有70kW。所以,大家在选择充电桩时并不是要功率越大就越好,而是要选择适合自己车型的充电桩。
充电桩是指为电动汽车提供能量补充的充电装置,其功能类似于加油站里面的加油机,可以固定在地面或墙壁,安装于公共建筑(公共楼宇、商场、公共停车场等)和居民小区停车场或充电站内,可以根据不同的电压等级为各种型号的电动汽车充电。
充电桩的输入端与交流电网直接连接,输出端都装有充电插头用于为电动汽车充电。充电桩一般提供常规充电和快速充电两种充电方式,人们可以使用特定的充电卡在充电桩提供的人机交互操作界面上刷卡使用,进行相应的充电操作和费用数据打印,充电桩显示屏能显示充电量、费用、充电时间等数据。
充电桩的建设要求:
作为电网配用电侧的电动汽车充电桩(栓),其结构的特殊性决定了自动化通信系统的特点是被测点多且分散、覆盖面广、通信距离短。并且随着城市的发展,网络拓扑要求具有灵活性和扩展性的结构,因此,电动汽车充电桩(栓)通信方式的选择应考虑如下问题:
(1) 通信的可靠性——通信系统要长期经受恶劣环境和较强的电磁干扰或噪音干扰的考验,并保持通信的畅通。
(2) 建设费用——在满足可靠性的前提下,综合考虑建设费用及长期使用和维护的费用。
(3) 双向通信——不仅能实现信息量的上传,还要实现控制量的下达。
(4) 多业务的数据传输速率——随着以后终端业务量的不断增长,主站到子站、子站到终端之间通信对实现多业务的数据传输速率要求越来越高。
(5) 通信的灵活性和可扩展性——由于充电桩(栓)具有控制点面多、面广和分散的特点,要求采用标准的通信协议,随着“ALL IP”网络技术趋势的发展以及电力运营业务的不断增长,需要考虑基于IP的业务承载,同时要求便于安装施工、调试、运行、维护。