它们之间的电气连接通常是通过电路板横断面上的镀通孔实现的。除非另行说明,多层印制电路板和双面板一样,一般是镀通孔板。多基板是将两层或更多的电路彼此堆叠在一起制造而成的,它们之间具有可靠的预先设定好的相互连接。由于在所有的层被碾压在一起之前,已经完成了钻孔和电镀,这个技术从一开始就违反了传统的制作过程。里面的两层由传统的双面pcb板组成,而外层则不同,它们是由独立的单面板构成的。在碾压之前,内基板将被钻孔、通孔电镀、图形转移、显影以及蚀刻。被钻孔的外层是信号层,它是通过在通孔的内侧边缘形成均衡的铜的圆环这样一种方式被镀通的。随后将各个层碾压在一起形成多基板,该多基板可使用波峰焊接进行(元器件间的)相互连接。碾压可能是在液压机或在超压力舱(高压釜)中完成的。在液压机中,准备好的材料(用于压力堆叠)被放在冷的或预热的压力下(高玻璃转换温度的材料置于170-180℃的温度中)。玻璃转换温度是无定形的聚合体(树脂)或部分的晶体状聚合物的无定形区域从一种坚硬的、相当脆的状态变化成一种粘性的、橡胶态的温度。多基板投入使用是在专业的电子装备(计算机、军事设备)中,特别是在重量和体积超负荷的情况下。然而这只能是用多基板的成本增加来换取空间的增大和重量的减轻。在高速电路中,多基板也是非常有用的,它们可以为印制电路板的设计者提供多于两层的pcb板面来布设导线,并提供大的接地和电源区域。
线路板是重要的电子部件,是电子元器件的支撑体,是电子元器件电气连接的载体,线路板的生产工艺流程比较复杂,很多朋友还不是很清楚各种类型线路板的生产流程,下面小编来根据工厂的实际情况来详细的说一说。生产工艺流程
单面板工艺流程
下料磨边→钻孔→外层图形→(全板镀金)→蚀刻→检验→丝印阻焊→(热风整平)→丝印字符→外形加工→测试→检验
双面板喷锡板工艺流程
下料磨边→钻孔→沉铜加厚→外层图形→镀锡、蚀刻退锡→二次钻孔→检验→丝印阻焊→镀金插头→热风整平→丝印字符→外形加工→测试→检验
双面板镀镍金工艺流程
下料磨边→钻孔→沉铜加厚→外层图形→镀镍、金去膜蚀刻→二次钻孔→检验→丝印阻焊→丝印字符→外形加工→测试→检验
PCB内部产生不同压力的来源分两个方向,一为内在,即PCB本身异常、结合力偏低;二为外在,即外力太大或焊接制程中受热不均匀,膨胀不一致或超出PCB承受力。层与层之间的分离在PCB上体现在不同介质层之间、介质层与铜箔之间,铜箔与铜箔之间,铜箔与涂覆层或油墨之间,下面小编来详细的介绍一下多层板分层起泡的原因及解决方案。多层线路板分层起泡的原因
1、压制不当导致空气、水气与污染物藏入;
2、压制过程中由于热量不足,周期太短,半固化片品质不良,压机功能不正确,以致固化程度出现问题;
3、内层线路黑化处理不良或黑化时表面受到污染;
4、内层板或半固化片被污染;
5、胶流量不足;
6、过度流胶——半固化片所含胶量几乎全部挤出板外;
7、在无功能的需求下,内层板尽量减少大铜面的出现(因树脂对铜面的结合力远低于树脂与树脂的结合力);
8、采用真空压制时,所使的压力不足,有损胶流量与粘结力(因低压所压制的多层板其残余应力也较少)。
四层线路板和六层线路板的区别:
1、由于是6层线路板,有4层可以走信号线,所以线路板表面上出现的布线应该比较宽松(同层布线),这样有利于减少相互间的干扰。
2、六层线路板的重量要大于四层线路板,但是单条内存模组就比较难比较出来,但是如果各拿出来20条同样的内存,就比较容易比较出来了。
3、如果有的导孔在线路板正面出现,却在反面找不到,那么就一定是6/8层板了。如果线路板的正反面都能找到相同的导孔,自然就是四层板了。
其中四层线路板的价格较为低廉,但是相对的在抗噪讯的能力也比较弱,而六层板的成本则较高,因为电源线路或接地线路可以单独占用一层,而不必与其它信号线路混在一起,所以在抗噪讯干扰的能力也比四层板较佳、性能更稳定一点。四层板与六层板的差异不是很容易以线路厚度来分辨,不过许多六层板都会有如下图的层数标示:
一面可看到123的字样,越中间的标示层越模糊,另一面则可看到456的字样,这就是各层的标示记号。
所以一般厂商都采用四层线路 板。但是不可以否认,这在一定程度上是一种节约成本,如果使用6 层板的话,可以有充足的布线空间,也有更多的地线和电源的考虑方案。所以,不需要太苛刻于走线的过于紧密。这样线宽和线间的电磁干扰都会充分得到考虑。