重庆沅呈模型设计服务有限公司

重庆巴南区人力资源模型设计,累积点滴改进,迈向完善品质

价格:面议 2019-08-24 06:08:01 416次浏览

物理模型

也称实体模型 ,又可分为实物模型和类比模型。

①实物模型:根据相似性理论制造的按原系统比例缩小(也可以是放大或与原系统尺寸一样)的实物,例如风洞实验中的飞机模型,水力系统实验模型,建筑模型,船舶模型等。

②类比模型:在不同的物理学领域(力学的、电学的、热学的、流体力学的等)的系统中各自的变量有时服从相同的规律,根据这个共同规律可以制出物理意义完全不同的比拟和类推的模型。例如在一定条件下由节流阀和气容构成的气动系统的压力响应与一个由电阻和电容所构成的电路的输出电压特性具有相似的规律,因此可以用比较容易进行实验的电路来模拟气动系统。

数学模型是针对参照某种事物系统的特征或数量依存关系,采用数学语言,概括地或近似地表述出的一种数学结构,这种数学结构是借助于数学符号刻划出来的某种系统的纯关系结构。从广义理解,数学模型包括数学中的各种概念,各种公式和各种理论。因为它们都是由现实世界的原型抽象出来的,从这意义上讲,整个数学也可以说是一门关于数学模型的科学。从狭义理解,数学模型只指那些反映了特定问题或特定的具体事物系统的数学关系结构,这个意义上也可理解为联系一个系统中各变量间内的关系的数学表达。

数学模型所表达的内容可以是定量的,也可以是定性的,但必须以定量的方式体现出来。因此,数学模型法的操作方式偏向于定量形式。

数学模型是运用数理逻辑方法和数学语言建构的科学或工程模型。

数学模型的历史可以追溯到人类开始使用数字的时代。随着人类使用数字,就不断地建立各种数学模型,以解决各种各样的实际问题。对于广大的科学技术工作者对大学生的综合素质测评,对教师的工作业绩的评定以及诸如访友,采购等日常活动,都可以建立一个数学模型,确立一个最佳方案。建立数学模型是沟通摆在面前的实际问题与数学工具之间联系的一座必不可少的桥梁。

用字母、数字和其他数学符号构成的等式或不等式,或用图表、图像、框图、数理逻辑等来描述系统的特征及其内部联系或与外界联系的模型。它是真实系统的一种抽象。数学模型是研究和掌握系统运动规律的有力工具,它是分析、设计、预报或预测、控制实际系统的基础。数学模型的种类很多,而且有多种不同的分类方法。

静态和动态模型

静态模型是指要描述的系统各量之间的关系是不随时间的变化而变化的,一般都用代数方程来表达。动态模型是指描述系统各量之间随时间变化而变化的规律的数学表达式,一般用微分方程或差分方程来表示。经典控制理论中常用的系统的传递函数也是动态模型,因为它是从描述系统的微分方程变换而来的(见拉普拉斯变换)。

店铺已到期,升级请联系 18670343956
联系我们一键拨号15823064818