通过主观意识借助实体或者虚拟表现构成客观阐述形态结构的一种表达目的的物件(物件并不等于物体,不局限于实体与虚拟、不限于平面与立体)。
模型≠商品。任何物件定义为商品之前的研发过程中形态均为模型,当定义型号、规格并匹配相应价格的时候,模型将会以商品形式呈现出来。
从广义上讲:如果一件事物能随着另一件事物的改变而改变,那么此事物就是另一件事物的模型。模型的作用就是表达不同概念的性质,一个概念可以使很多模型发生不同程度的改变,但只要很少模型就能表达出一个概念的性质,所以一个概念可以通过参考不同的模型从而改变性质的表达形式。
当模型与事物发生联系时会产生一个具有性质的框架,此性质决定模型怎样随事物变化
物理模型
也称实体模型 ,又可分为实物模型和类比模型。
①实物模型:根据相似性理论制造的按原系统比例缩小(也可以是放大或与原系统尺寸一样)的实物,例如风洞实验中的飞机模型,水力系统实验模型,建筑模型,船舶模型等。
②类比模型:在不同的物理学领域(力学的、电学的、热学的、流体力学的等)的系统中各自的变量有时服从相同的规律,根据这个共同规律可以制出物理意义完全不同的比拟和类推的模型。例如在一定条件下由节流阀和气容构成的气动系统的压力响应与一个由电阻和电容所构成的电路的输出电压特性具有相似的规律,因此可以用比较容易进行实验的电路来模拟气动系统。
线性和非线性模型
线性模型中各量之间的关系是线性的,可以应用叠加原理,即几个不同的输入量同时作用于系统的响应,等于几个输入量单独作用的响应之和。线性模型简单,应用广泛。非线性模型中各量之间的关系不是线性的,不满足叠加原理。在允许的情况下,非线性模型往往可以线性化为线性模型,方法是把非线性模型在工作点邻域内展成泰勒级数,保留一阶项,略去高阶项,就可得到近似的线性模型。
模型假设
根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。
模型构成
根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。